Coupling finite elements and particles for adaptivity: an application to consistently stabilized convection-diffusion
نویسندگان
چکیده
A mixed approximation coupling finite elements and mesh-less methods is presented. It allows selective refinement of the finite element solution without remeshing cost. The distribution of particles can be arbitrary. Continuity and consistency is preserved. The behaviour of the mixed interpolation in the resolution of the convection-diffusion equation is analyzed.
منابع مشابه
Finite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملOn the natural stabilization of convection diffusion problems using LPIM meshless method
By using the finite element $p$-Version in convection-diffusion problems, we can attain to a stabilized and accurate results. Furthermore, the fundamental of the finite element $p$-Version is augmentation degrees of freedom. Based on the fact that the finite element and the meshless methods have similar concept, it is obvious that many ideas in the finite element can be easily used in the meshl...
متن کاملNumerical Study of Entropy Generation for Natural Convection in Cylindrical Cavities
In this paper, an enhanced computational code was developed using finite-volume method for solving the incompressible natural convection flow within the cylindrical cavities. Grids were generated by an easy method with a view to computer program providing. An explicit integration algorithm was applied to find the steady state condition. Also instead of the conventional algorithms of SIMPLE, SIM...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملMultilevel Adaptive Particle Methods for Convection-Diffusion Equations
We present novel multilevel particle methods with extended adaptivity in areas where increased resolution is required. We present two complementary approaches as inspired by r-adaptivity and adaptive mesh refinement (AMR) concepts introduced in finite difference and finite element schemes. For the r-adaptivity a new class of particle based mapping functions is introduced while the particle-AMR ...
متن کامل